Activity Worksheet Does the equality hold; Kinetic Energy = Potential Energy?

- 1. Calculate potential energy of object use (ball used in the experiment) at the tower height in Part 1 using Equation 1: m x g x h = PE.
 - a. What is the mass of the ball? m =_____ kg
 - b. What is the gravitation acceleration in proper units? g = _____ m/s^2
 - c. What is the height of tower (measured from the bottom of the ball)? h = _____ m
 - d. Multiply m, g, and h, you should get PE = _____.
- 2. Fill in the chart using data collected from the three trials:

Trial	Time from Port 1	Time from Port 2	Time difference between Port 1 & 4 (T1 - T2 = t)
#1	(= 11)	(- 12)	(11 - 12 - t)
"			
#2			
#3			

3. Calculate ball's average velocity at the bottom of the ramp using velocity values from three trials.

Time difference between Port 1 & Port 4 (T)	Velocity = distance / time
Trial 1: t =	V1 =
Trial 2: t =	V2 =
Trial 3: t =	V3 =
	Average Experimental Velocity = (V1 + V2 + V3) / 3 =

4. Calculate ball's kinetic energy at the bottom of the ramp using Equation 2: $KE = \frac{1}{2} \times m \times v^2$

Velocity	Kinetic Energy
V1:	KE1:
V2:	KE2:
V3:	KE3:
	Average KE = (KE1 + KE2 + KE3)/3 =

5. Is the average kinetic energy found in Part 4 the same as the potential energy found in Part 1d? Yes or No? If no, what is the difference; subtract the two values.

- 6. Offer an explanation for what you observed and calculated.
- 7. Using the equality of PE = KE; m x g x h = $\frac{1}{2} \times m \times v^2$ Assume we did not calculate velocity from our experiments. Instead the equality between PE and KE holds. Once we calculated PE from multiplying m x g x h. We set this value to be equal to our KE. Solve for velocity theoretical. The equation we need is:

$$v_{theoretical} = \sqrt{\frac{2 \times KE}{m}}$$

Calculate the theoretical velocity that we should have gotten. How far is this value from the experimental velocity?